PMT

Further Mechanics 1 Mark Scheme

Question	Scheme	Marks	AOs		
1 (a)	Using the model and $v^2 = u^2 + 2as$ to find v	M1	3.4		
	$v^2 = 2as = 2g \times 2.4 = 4.8g \implies v = \sqrt{(4.8g)}$	A1	1.1b		
	Using the model and $v^2 = u^2 + 2as$ to find u	M1	3.4		
	$0^2 = u^2 - 2g \times 0.6 \implies u = \sqrt{(1.2g)}$	A1	1.1b		
	Using the correct strategy to solve the problem by finding the sep. speed and app. speed and applying NLR	M1	3.1b		
	$e = \sqrt{(1.2g)} / \sqrt{(4.8g)} = 0.5 *$	A1*	1.1b		
		(6)			
(b)	Using the model and $e = \text{sep. speed} / \text{app. speed}$, $v = 0.5\sqrt{(1.2g)}$	M1	3.4		
	Using the model and $v^2 = u^2 + 2as$	M1	3.4		
	$0^2 = 0.25 (1.2g) - 2gh \implies h = 0.15 (m)$	A1	1.1b		
		(3)			
(c)	Ball continues to bounce with the height of each bounce being a quarter of the previous one	B 1	2.2b		
		(1)			
		(10 m	arks)		
Notes:					
(a) M1: Fo A1: Fo M1: Fo A1: Fo M1: Fo A1*: Fo	 (a) M1: For a complete method to find v A1: For a correct value (may be numerical) M1: For a complete method to find u A1: For a correct value (may be numerical) M1: For finding both v and u and use of Newton's Law of Restitution A1*: For the given answer 				
(b) M1: Fo M1: Fo A1: Fo	For use of Newton's Law of Restitution to find rebound speed For a complete method to find h For 0.15 (m) oe				
(c) B1: Fo	r a clear description including reference to a quarter				

Quest	on Scheme	Marks	AOs	
2 (a)	Energy Loss = KE Loss – PE Gain	M1	3.3	
	$= \frac{1}{2} \times 0.5 \times 25^2 - 0.5 \ g \times 20$	A1	1.1b	
	= 58.25 = 58 (J) or 58.3 (J)	A1	1.1b	
		(3)		
(b)	Using work-energy principle, $20 R = 58.25$	M1	3.3	
	R = 2.9125 = 2.9 or 2.91	A1ft	1.1b	
		(2)		
(c)	Make resistance variable (dependent on speed)	B1	3.5c	
		(1)		
	(6 marks)			
Notes:				
(a) M1:	For a difference in KE and PE			
A1:	For a correct expression			
A1:	For either 58 (2sf) or 58.3(3sf)			
(b) M1: A1ft:	For use of work-energy principlet: For either 2.9 (2sf) or 2.91 (3sf) follow through on their answer to (a)			
(c) B1:	For variable resistance oe			

Questi	on Scheme	Marks	AOs		
3 (a)	Force = Resistance (since no acceleration) = 30	B1	3.1b		
	Power = Force \times Speed = 30 \times 4	M1	1.1b		
	= 120 W	A1 ft	1.1b		
		(3)			
(b)	Resolving parallel to the slope	M1	3.1b		
	$F - 60g\sin\alpha - 30 = 0$	A1	1.1b		
	F = 70	A1	1.1b		
	Power = Force \times Speed = 70 \times 3	M1	1.1b		
	= 210 W	A1 ft	1.1b		
		(5)			
	(8 marks)				
Notes:					
(a)					
B1:	For force $= 30$ seen				
M1:	For use of $P = Fv$				
Alft:	For 120 (W), follow through on their '30'				
(b)					
M1:	For resolving parallel to the slope with correct no. of terms and 60g resolved				
A1:	For a correct equation				
A1:	For $F = 70$				
M1:	For use of $P = Fv$				
Alft:	For 210 (W), follow through on their '70'				

Questi	on Scheme	Marks	AOs			
4 (a)	Use of conservation of momentum	M1	3.1a			
	3mu - 2mu = 3mv + mw	A1	1.1b			
	Use of NLR	M1	3.1a			
	3ue = -v + w	A1	1.1b			
	Using a correct strategy to solve the problem by setting up two equations (need both) in u and v and solving for v	M1	3.1b			
	$v = \frac{u}{4}(1 - 3e)$	A1	1.1b			
		(6)				
(b)	$\frac{u}{4}(1-3e)<0$	M1	3.1b			
	$\frac{1}{3} < e \le 1$	A1	1.1b			
		(2)				
(c)	Solving for <i>w</i>	M1	2.1			
	$w = \frac{u}{4} (1 + 9e) *$	A1 *	1.1b			
		(2)				
(d)	Substitute $e = \frac{5}{9}$	M1	1.1b			
	$v = -\frac{u}{6}, w = \frac{3u}{2}$	A1	1.1b			
	Use NLR for impact with wall, $x = fw$	M1	1.1b			
	Further collision if $x > -v$	M1	3.4			
	$f\frac{3u}{2} > \frac{u}{6}$	A1	1.1b			
	$1 \ge f > \frac{1}{9}$	A1	1.1b			
		(6)				
		(16 n	narks)			
Notes:						
A1:	A1: For a correct equation					
M1:	M1: For use of Newton's Law of Restitution, with e on the correct side					
A1:	A1: For a correct equation					
M1:	For setting up <i>two</i> equations and solving their equations for v					
(b)						
M1:	M1: For use of an appropriate inequality					
A1:	For a complete range of values of <i>e</i>					
(c)						
M1:	For solving their equations for w					
AI	ror me grven answer					

Question 4 notes continued:

(d)

- **M1:** For substituting $e = \frac{5}{9}$ into their *v* and *w*
- **A1:** For correct expressions for *v* and *w*
- M1: For use of Newton's Law of Restitution, with *e* on the correct side
- M1: For use of appropriate inequality
- A1: For a correct inequality
- A1: For a correct range